Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
نویسندگان
چکیده
The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels. Such an architecture allows microchannel separations within the chip, as well as allowing unique operations that utilize nanocapillary interconnects: the separation of analytes based on molecular size, channel isolation, enhanced mixing, and sample concentration. Device fabrication is made possible by a transfer process of labile membranes and the development of a contact printing method for a thermally curable epoxy based adhesive. This adhesive is shown to have bond strengths that prevent leakage and delamination and channel rupture tests exceed 6 atm (0.6 MPa) under applied pressure. Channels 100 microm in width and 20 microm in depth are contact printed without the adhesive entering the microchannel. The chip is characterized in terms of resistivity measurements along the microfluidic channels, electroosmotic flow (EOF) measurements at different pH values and laser-induced-fluorescence (LIF) detection of green-fluorescent protein (GFP) plugs injected across the nanocapillary membrane and into a microfluidic channel. The results indicate that the mixed polymer micro-nanofluidic multilayer chip has electrical characteristics needed for use in microanalytical systems.
منابع مشابه
Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices.
Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-print...
متن کاملMultifunctional reversibly sealable microfluidic devices for patterned material deposition approaches
We present a concept to produce reversibly sealable polydimethylsiloxane (PDMS) based microfluidic devices with versatile channel designs, withstanding pressures up to 600 kPa. A novel fabrication strategy, namely the casting of a secondary PDMS casing around the initial channel system allows diverting the tubing attached to the channels sideways so that a simple mounting assembly can be used t...
متن کاملCharacterizing Non-Conductive Adhesives using Finite Element Analysis: Residual Stress Determination
ABSTRACT This study aims to establish a methodology for determining the residual contact stress developed during fabrication of nonconductive adhesive (NCA) bonded flip-chip-on-flex (FCOF) microelectronics systems. The method is demonstrated for a selected non-conductive adhesive. Fabrication of an NCA bonded FCOF system requires a compressive force large enough to compensate for the inherent c...
متن کاملInjection molded nanofluidic chips: fabrication method and functional tests using single-molecule DNA experiments.
We demonstrate that fabrication of well-defined nanofluidic systems can be greatly simplified by injection molding of thermoplastic polymers. Chips featuring nanochannel arrays, microchannels and integrated interconnects are produced in a single processing step by injection molding. The resulting open channel structures are subsequently sealed by facile plasma-enhanced thermal bonding of a poly...
متن کاملComplete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
Development of all polymer-based nanofluidic devices using replication technologies, which is a prerequisite for providing devices for a larger user base, is hampered by undesired substrate deformation associated with the replication of multi-scale structures. Therefore, most nanofluidic devices have been fabricated in glass-like substrates or in a polymer resist layer coated on a substrate. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2006